مرين1

$$\lim_{x \to 0} \frac{1}{x} \int_0^x \frac{1}{1+t^4} dt \int_0^x \frac{1}{x} \int_0^x \frac{1}{\cos t} dt$$

 $\lim_{x \to e} \frac{1}{x - e} \int_{e}^{x} Arc \tan(\ln t) dt$

2. احسب ما يلي
$$\int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos x} dx$$
 و 2.

 $\int_0^{\frac{\pi}{4}} \sin(2x)\cos(4x) \, dx \, \int_0^1 \frac{e^x}{1+e^x} \, dx$

$$\int_{0}^{1} Arc \tan x \, dx \, \int_{1}^{2} \left(x^{2} + \frac{1}{x^{2}} \right)^{2} dx$$

 $\int_0^1 x^2 \sin 3x \, dx \, \mathbf{g} \, \int_0^\pi e^x \cos x \, dx$

3. مستعملا مكاملة بتغيير المتغير احسب

نع $\int_{0}^{1} \sqrt[n]{x+1} \, dx$ و $t = \ln x$ ضع $\int_{1}^{e} (\ln x)^{2} dx$

$$t = \tan \frac{x}{2}$$
 فع $\int_0^{\frac{\pi}{4}} \frac{1}{\cos x} dx$ و $n \in IN^* t = \sqrt[n]{x+1}$

$$t = \sqrt{x} \quad \text{if } \int_0^1 \frac{1}{(1+x)\sqrt{x}} dx$$

تمرین2

نعتبر الدائتين المعرفتين على الما يلي

. $\forall x \in IR \ F(x) = \int_{-x}^{x} \frac{dt}{1+t^4} \, \mathbf{y} \, \forall x \in IR \ f(x) = \int_{0}^{x} \frac{dt}{1+t^4}$

- ين ان f قابلة للاشتقاق على \mathbb{R} وحدد (x) ككل x من \mathbb{R} .
 - \mathbb{R} على \mathbb{R} . ادرس رتابة \mathbb{R}
 - . $\lim_{x \to 0} \frac{f(x)}{x} = 1$ يين ان .3
 - بين ان F دالة فردية.
 - واستنتج تغيرات $\forall x \in IR \;\; F(x) = 2f(x)$ واستنتج تغيرات .5

جزء2

نعتبر المتتالية $(u_n)_{n\geq 1}$ المعرفة بما يلي

$$\forall n \ge 1 \quad u_n = \int_0^1 \frac{dx}{1 + x^n}$$

- u_{2} و u_{1} .1
- د. ادرس رتابة $(u_n)_{n>1}$ وبين انها محدودة.
- . $\forall n \ge 1$ $1 u_n = \int_0^1 \frac{x^n}{1 + x^n} dx$ بين ان .3
 - هایتها. استنتج ان $(u_n)_{n\geq 1}$ متقاربة واحسب نهایتها.

جزء 3

 $(O, \vec{t}\,, \vec{j})$ في هذا الجزء نعتبر المستوى منسوبا الى معلم متعامد وممنظم

- . مادا تمثل u_4 هندسیا . 1
 - . سب احسب .2

3. احسب ب cm^3 حجم مجسم الدوران المولد بدوران منحنى عجم حول محور الافاصيل على القطعة [0,1] خد $|\vec{i}|| = 2cm$

تمرین3

جزء1 ليكن ٢ عددا حقيقيا موجبا قطعا .

 $\forall n \in IN \ n \geq 2 \int_{n}^{n+1} \frac{1}{x^{r}} dx \leq \frac{1}{n^{r}} \leq \int_{n-1}^{n} \frac{1}{x^{r}} dx$.1

 $S_n = 1 + \frac{1}{2^r} + \frac{1}{3^r} + \dots + \frac{1}{n^r}$ نضع IN^* ن عن .2

 $\forall n \ge 1 \int_{1}^{n+1} \frac{1}{x^{r}} dx \le S_{n} \le 1 + \int_{1}^{n} \frac{1}{x^{r}} dx$. ن بین ان

 S_n ب. ادرس تقارب المتتالية $(S_n)_{n\geq 1}$ حسب قيم

. $\forall n \geq 1$ $v_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$ المعرفة ب $(v_n)_{n \geq 1}$ المعرفة . 3

 $0 \le c \le 1$ بين ان $(v_n)_{n \ge 1}$ متقاربة وان نهيتها

جزء2

وموجبة عليه. f دالة متصلة وتناقصية على المجال f وموجبة عليه.

 $\forall n \in IN \ n \geq 2 \int_{n}^{n+1} f(x) dx \leq f(n) \leq \int_{n-1}^{n} f(x) dx$ بين ان .1

. $F_n = f(1) + f(2) + f(3) + ... + f(n)$ نضع IN^* نضع 2.

 $\forall n \geq 1$. $\forall n \geq 1$ $\int_{1}^{n+1} f(x) dx \leq F_n \leq f(1) + \int_{1}^{n} f(x) dx$. i.

 $n \ge 1 \int_1^n \int (x) dx \le F_n \le \int (1) + \int_1^n \int (x) dx \quad .$

. $\forall n \geq 2$ $F_n - f(1) \leq \int_1^n f(x) dx \leq F_{n-1}$ ب. استنتج ان

المعرفة بما يلي المتالية $(u_n)_{n\geq 1}$ المعرفة بما يلي .3

 $\forall n\geq 1\quad u_n=\int_1^nf(x)dx$ بين ان المتتاليتين $(F_n)_{n\geq 1}$ و $(u_n)_{n\geq 1}$ من نفس النوع.

رين4

حسب النهايات التالية

 $\lim_{n \to +\infty} \int_{1}^{e} x^{n} \ln(x) dx \quad \mathbf{j} \lim_{n \to +\infty} n \sum_{k=1}^{n} \frac{e^{-\frac{n}{k}}}{k^{2}} \quad \mathbf{j} \quad \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{n}{n^{2} + k^{2}}$

جزء1

 $x \in IR^+$ د احسب التكامل $\int_0^x \frac{1}{(1+t)^2} dt$ حيث 1.

.
$$\forall x \in IR^+$$
 $\frac{1}{(1+x)^2} \le \frac{1}{1+x}$ اثبت ان .1.2

.
$$\forall x \in IR^+$$
 $\frac{x}{1+x} \le \ln(1+x)$ ب. استنتج ان

3. اثبت ان

$$\forall x \in IR^+ \quad x - \frac{x^2}{2} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}$$

بررد نعتبر الدالة f المعرفة على \R بما يلي

وليكن
$$\left(C
ight)$$
 منحناها في $\mathbf{f}(\mathbf{x})=egin{cases} -1+\mathrm{e}^{rac{-2Arctanx}{\pi}},\ x\leq\mathbf{0} \ rac{\ln(1+\mathrm{x})-\mathrm{x}}{\mathrm{x}},\ x>\mathbf{0} \end{cases}$

 $\left(O,ec{i}\,,ec{j}
ight)$ المستوى المنسوب الى معلم متعامد وممنظم

- IR متصلة على f متصلة على 1
- د. ادرس قابلية اشتقاق f في g واول النتائج المحصلة .
 - (C) . ادرس الفرعيين اللانهائيين للمنحنى .3
 - f' الدالة المشتقة للدالة .4
 - f ادرس تغیرات الداله f
- بین ان f تقابل من \mathbb{R} نحو مجال I پنبغی تحدیده وحدد .6 IR^- قصور التقابل العكسي على
- $e \approx 2.7$ و المستقيمات دات المعادلات $|\vec{i}|| = 2cm$ و المستقيمات دات المعادلات x = 0 و المستقيمات دات المعادلات x = 0 و x = -1 و المستقيمات دات المعادلات x = 0

نعتبر الدالة F المعرفة على المجال $[0,+\infty[$ بما يلي

$$(C')$$
وليكن . $F(0)=0$ و $\forall x\succ 0$ $F(x)=\int_{\sqrt{x}}^{x^3}f(t)dt$ منحناها في المستوى المنسوب الى المعلم السابق.

- 1. ادرس اتصال F في العدد Φ على اليمين.
- 1. ادرس قابلية اشتقاق F في العدد 0 على اليمين واول 0مبيانيا النتيجة المحصلة.

 \cdot بين ان قابلة للاشتقاق على $]0,+\infty$ وحدد

[0,1] على المجال F على ادرس رتابة

 $\lim_{x \to +\infty} F(x) + x^6 = +\infty$ يين ان.

تمرين6: جزء1

 $\mathbb R$ دالة متصلة على مجال I و u و u دالتان قابلتان للاشتقاق على fحيث I المعرفة بما يلي . $v(IR) \subset I$ و $u(IR) \subset I$ $.F(x) = \int_{u(x)}^{v(x)} f(t) dt$

 $^{\mathbb{R}}$ تاکد ان F معرفة على 1 . . \mathbb{R} ين ان F قابلة للاشتقاق على واحسب F'(x) ين ان F قابلة للاشتقاق على F . F . F

 $g(x)=egin{cases} rac{x-1}{\ln x} \ , \ x
eq 0 \ , \ x=0 \ \end{bmatrix}$ بما يلي g بما يلي g المعرفة على g بما يلي g بمتصلة على المجال g بين ان g متصلة على المجال .1

 $f(x) = \frac{1}{\ln x}$ و $v(x) = x^2$ و u(x) = xو I = igl[0,1] رموز الجزء الاول) .

I . تاكد ان F معرفة على المجال . F'(x) يكل X من F'(x) ب. احسب

 $c \in \left] x^2, x \right[$ ي المجال x من المجال x من المجال x

 $\frac{x(x-1)}{2\ln x} < \frac{x(x-1)}{\ln c} < \frac{x(x-1)}{\ln x}$

ب. باستعمال مبرهنة القيمة المتوسطة استنتج ان $\lim_{x\to 0^+} F(x) = 0$

 $\forall x \in I$ $h(x) = \int_0^x g(t)dt$ نضع .4 $\forall x \in I \quad h(x) = F(x)$ ہین ان

 $\forall x \in I \quad F(x) = \ln 2 + \int_x^{x^2} \frac{g(t)}{t} dt$ يين ان .5 $\forall x \in I \quad \frac{x+1}{2x} \cdot \frac{(x-1)^2}{\ln x} \le F(x) - \ln(2) \le \frac{(x-1)^2}{\ln x}$

احسب مساحة حيز المستوى المحصور بين (C_g) والمستقيمات دات المعادلات و y = 0 x = 1 x = 0