1

1,5 1,5

1,5

1,5

A.S: 2012-2013

O Exercice n°01: (04 pts)

- \Rightarrow On considère la fonction : $f: x \mapsto \frac{\sqrt[4]{x+1} \sqrt[3]{x+1}}{\sqrt[3]{x+1} \sqrt{x+1}}$.
 - 1)- a)- Déterminer D_f .
 - **b)-** Calculer: $\lim_{x\to(-1)^+} f(x)$ et $\lim_{x\to+\infty} f(x)$.
 - 2)- la fonction f admet-elle un prolongement par continuité en $x_0 = 0$?

O Exercice $n^{\circ}02$: (05 pts)

 \Rightarrow Soit f la fonction définie sur $\mathbb R$ par :

$$(\forall x \in \mathbb{R}), f(x) = x^3 - 3x - 3$$

- 1) Dresser le tableau de variation de f.
- **2)-** Montrer que l'équation (E): f(x) = 0 admet une solution unique α dans \mathbb{R} et que $2 < \alpha < 3$.
- 3) Montrer que : $\alpha = a + \frac{1}{a}$, où $a = \frac{\sqrt[3]{12 + 4\sqrt{5}}}{2}$
- **4)-** Résoudre dans \mathbb{R} , l'équation : (F): $\arctan\left(\sqrt{\tan^3 x 3\tan x}\right) = \frac{\pi}{3}$.

O Exercice n°03: (07 pts)

 \Rightarrow Soit f la fonction définie par :

$$f(x) = \arctan\left(\frac{2\sqrt[4]{x}}{1-\sqrt{x}}\right)$$
.

- 1)- a)- Déterminer D_f , puis calculer les limites de f aux bornes de D_f .
 - **b)-** La fonction f admet-elle un prolongement par continuité en $x_0 = 1$?
- 2) Montrer que : $(\forall x \in [0,1[); f(x) = 2\arctan(\sqrt[4]{x})$
 - Et que : $(\forall x \in]1, +\infty[); f(x) = 2\arctan(\sqrt[4]{x}) \pi$.

1,5

0,5

1

0,75

1,25

0,75

1,75

3)- Soit g la restriction de f à l'intervalle $I =]1, +\infty[$.

a)- Montrer que g admet une fonction réciproque g^{-1} définie sur un Intervalle J qu'on déterminera .

- **b)-** Calculer $g^{-1}(x)$ pour tout $x \in J$.
- **4)-** Soient a_1 , a_2 ... et a_n des éléments de l'intervalle]0,1[où $n \in \mathbb{N}^* \{1\}$.
 - ✓ Montrer que : $(\exists!c]0,1[)$; $\arctan\left(\frac{2\sqrt[4]{c}}{1-\sqrt{c}}\right) = \frac{2}{n} \times \sum_{k=1}^{n} \arctan\left(\sqrt[4]{a_k}\right)$.

O Exercice n°04: (04 pts)

 \Rightarrow Soit f la fonction définie sur $I = \left[-a, \frac{\pi}{2} \right]$ par :

$$f(x) = \frac{\sin x}{\sin(x+a)}$$
, où $a \in \left]0, \frac{\pi}{2}\right[$.

1) - Calculer $\lim_{x \to (-a)^+} f(x)$.

2)- Montrer que f admet une bijection réciproque f^{-1} définie sur un intervalle J qu'on déterminera .

3)- Calculer $f^{-1}(x)$ pour tout $x \in J$.

• Exercices Bonus:

O Exercice n°01:

 \Rightarrow Soit f une fonction continue sur \mathbb{R} .

✓ Montrer que : $(\forall n \in \mathbb{N}^*)$, $\lim_{x \to \pm \infty} \frac{f(\sin x)}{x^n} = 0$.

O Exercice n°02:

 \Rightarrow Soit f une fonction continue sur [0,1], tel que :

$$(\forall x \in [0,1]); f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right) = 3f(x).$$

✓ Montrer que : $(\forall x \in [0,1]); f(x) = 0$.

2

1

http://www.maths-inter.ma/ Date: 13/08/2017 E-mail: ammari1042@gmail.com Tel: 0649113323 Réalisé par Mr: ABDELLAH BELKHATIR / Lycée: Charif al-idrissi / Benslimane / E-mail: abouzakariyamaths@gmail.com Tel: 06-67-74-56-58

O Exercice n°03:

 \Rightarrow Soit $(f_n)_{n\in\mathbb{N}}$ la suite définie par :

$$f_0 = 0$$
 , $f_1 = 1$ et $(\forall n \in \mathbb{N})$, $f_{n+2} = f_n + f_{n+1}$.

✓ Montrer que : $(\forall n \in \mathbb{N}); (f_{n+1})^2 - f_n \times f_{n+2} = (-1)^n$, puis en déduire

Que:
$$(\forall n \in \mathbb{N}^*)$$
; $\arctan\left(\frac{1}{f_{2n}}\right) = \arctan\left(\frac{1}{f_{2n+1}}\right) + \arctan\left(\frac{1}{f_{2n+2}}\right)$.

Fin du sujet

Bon courage et bonne Chance

http://www.maths-inter.ma/ Date: 13/08/2017 E-mail: ammari1042@gmail.com Tel: 0649113323
Réalisé par Mr: ABDELLAH BELKHATIR / Lycée: Charif al-idrissi / Benslimane / E-mail: abouzakariyamaths@gmail.com Tel: 06-67-74-56-58

2