O Exercice $n^{\circ}01$:(1,5 pts)

✓ On considère la fonction : $f: \varkappa \mapsto \frac{1}{2(1-\sqrt{\varkappa})} - \frac{1}{3(1-\sqrt[3]{\varkappa})}$.

1. Déterminer \mathcal{D}_f , puis montrer que f admet en $\varkappa_0 = 1$ un prolongement par continuité g que l'on déterminera.

O Exercice n°02:(03 pts)

✓ Soit f la fonction définie sur $I = \left[0, \frac{\sqrt{3}}{2}\right]$ par :

$$f(x) = \tan\left(\pi\sqrt{1-x^2}\right)$$
.

2. Calculer $\lim_{\kappa \to \left(\frac{\sqrt{3}}{2}\right)^{-}} f(\kappa)$, puis montrer que f est continue sur I.

3. Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J que l'on déterminera .

4. Expliciter $f^{-1}(\varkappa)$ pour tout $\varkappa \in J$.

O Exercice n°03:(09 pts)

✓ On considère la fonction f définie sur $I =]-\infty$, 1] par :

$$f(0) = \frac{-1}{2}$$
 et $f(x) = \frac{-1 + \sqrt{1-x}}{x}$, $x \neq 0$.

5. Montrer que f est continue sur I.

6. Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J que l'on déterminera .

7. Expliciter $f^{-1}(\varkappa)$ pour tout $\varkappa \in \mathcal{J}$.

8. pour tout $\varkappa \in I$, on pose : $h(\varkappa) = (2f(\varkappa) + 1)^3$. Montrer que h admet une fonction réciproque h^{-1} définie sur un intervalle \mathcal{H} que l'on déterminera et expliciter $h^{-1}(\varkappa)$ pour tout $\varkappa \in \mathcal{H}$.

9. Montrer que l'équation (\mathcal{E}) : $f(\kappa) = \frac{1}{2}\kappa - 1$ admet une unique solution dans l'intervalle]0,1[.

✓ Soit G la fonction définie sur $K = \left[\frac{-\pi}{2}, \frac{\pi}{4} \right]$ par :

$$G\left(\frac{-\pi}{2}\right) = 0 \text{ et } \left(\forall \varkappa \in \left[\frac{-\pi}{2}, \frac{\pi}{4}\right]\right), G(\varkappa) = f(\tan \varkappa).$$

1,5

1

1

1

1,5

1

1,5

1

http://www.maths-inter.ma/ Date: 10/08/2017 E-mail: ammari1042@gmail.com Tel: 0649113323
Réalisé par Mr: ABDELLAH BELKHATIR / Lycée: Charif al-idrissi / Benslimane / E-mail: abouzakariyamaths@gmail.com Tel: 06-67-74-56-58

2ème Bac Sm

Devoir surveillé n°01

A.S: 2015-2016

Page: 2/3

1,	25
	1

0,75

1

1,25

0,5

1,25

0,5

10. Montrer que G est continue sur K.

11. Montrer que G admet une bijection réciproque G^{-1} définie sur un intervalle L que l'on déterminera .

12. Expliciter $G^{-1}(\varkappa)$ pour tout $\varkappa \in L$.

O Exercice $n^{\circ}04$: (6,5 pts)

 \checkmark On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = 2x^3 - 11x^2 + 20x - 14$$
.

13. Dresser le tableau de variation complet de f.

14. Montrer que l'équation (\mathcal{E}) : f(x) = 0 admet une solution unique α dans \mathbb{R} et que $\frac{5}{2} < \alpha < 3$.

15. En déduire le signe de f sur $\mathbb R$.

✓ On considère la fonction g définie sur $\mathbb{R} - \{2\}$ par :

$$\mathscr{G}(x) = x^2 - 3x + \frac{2}{x-2}.$$

16. Dresser le tableau de variation complet de g.

17. Montrer que : $g(\alpha) = \frac{\frac{1}{2}\alpha^2 - 4\alpha + 9}{\alpha - 2}$, puis en déduire que $g(\alpha) > 0$.

18. Montrer que l'équation (\mathcal{E}) : $f(\mathcal{V}) = 0$ admet une solution unique b dans \mathbb{R} et que -1 < b < 0.

19. En déduire le signe de g sur $\mathbb{R} - \{2\}$.

• Exercices Bonus :

O Exercice n°01:

Very Pour tout $w \in \mathbb{N}$, on pose: $S_n = \sum_{k=1}^{2^n} \frac{1}{k}$.

20. Montrer que : $(\forall w \in \mathbb{N})$, $S_n \ge \frac{w}{2}$, puis en déduire la limite de $(S_n)_{n \in \mathbb{N}}$.

O Exercice n°02:

2

1

21. Montrer que la fonction : $f: \varkappa \mapsto \frac{1}{m(1-\sqrt[n]{\varkappa})} - \frac{1}{n(1-\sqrt[n]{\varkappa})}$ admet en

 $w_0 = 1$ un prolongement par continuité (où $m \ge 2$ et $m \ne m$).

http://www.maths-inter.ma/ Date: 10/08/2017 E-mail: ammari1042@gmail.com Tel: 0649113323
Réalisé par Mr: ABDELLAH BELKHATIR / Lycée: Charif al-idrissi / Benslimane / E-mail: abouzakariyamaths@gmail.com Tel: 06-67-74-56-58

O Exercice n°03:

Soit f une fonction continue sur [0,1] tels que : f(0) = 0 et f(1) = 1. On suppose de plus que est dérivable à droite de $\varkappa_0 = 0$ et à gauche de $\varkappa_1 = 1$ Et que : $f'_{d}(0) = f'_{\mathscr{S}}(1) = 0$.

22. Montrer que l'équation : (\mathcal{E}) : $f(\varkappa) = \varkappa$ admet au moins une solution Dans l'intervalle]0,1[.

O Exercice n°04:

✓ Soit f une fonction continue sur [0,1] tels que :

$$f(0) = f(1) = 0$$
 et $\left(\forall \varkappa \in \left[0, \frac{7}{10}\right]\right), f\left(\varkappa + \frac{3}{10}\right) \neq f(\varkappa)$.

23. Montrer que l'équation : (\mathcal{E}) : $f(\mathcal{L}) = 0$ admet au moins sept racines Dans l'intervalle [0,1].

Fin du sujet

Bon courage et honne Chance

2

2