« Certains exercices ont été télécharges sur un site internet avec des modifications un grand merci à l'auteur. »

Exercice1

Soient $A = \{1,2,3\}$ et $B = \{0,1,2,3\}$. Décrire les ensembles $A \cap B$, $A \cup B$ et $A \times B$.

Exercice2

Soient A = [1,3] et B = [2,4]. Déterminer $A \cap B$ et $A \cup B$.

Exercice3

Déterminer le complémentaire dans ℝ des parties suivantes :

$$A_1 =]-\infty, 0]; A_2 =]-\infty, 0[; A_3 =]0, +\infty[; A_4 = [0, +\infty[; A_5 =]1, 2[; A_6 = [1, 2[...]]])]$$

2. Soient $A=]-\infty$, $1[\cup]2$, $+\infty[$, $B=]-\infty$, 1[et $C=[2,+\infty[$. Comparer les ensembles suivants : $C_{\mathbb{R}}A$ et $C_{\mathbb{R}}B\cap C_{\mathbb{R}}C$

Exercice4

Soient $A =]-\infty, 3], B =]-2,7]$ et $C =]-5, +\infty[$ trois parties de \mathbb{R} . Déterminer $A \cap B$, $A \cup B$, $B \cap C$, $B \cup C$, $\mathbb{R} \setminus A$, $A \setminus B$, $(\mathbb{R} \setminus A) \cap (\mathbb{R} \setminus B)$, $(\mathbb{R} \setminus (A \cup B), (A \cap B) \cup (A \cap C)$ et $A \cap (B \cup C)$.

Exercice5

Soient A, B et C trois parties d'un ensemble E. Montrer que :

- 1. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 2. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Exercice6

Soient E un ensemble et A et B deux parties de E. On suppose que :

$$A \cap B \neq \emptyset$$
; $A \cup B \neq E$; $A \nsubseteq B$; $B \nsubseteq A$

On pose

$$A_1 = A \cap B$$
; $A_2 = A \cap C_E B$; $A_3 = B \cap C_E A$; $A_4 = C_E (A \cup B)$

- 1. Montrer que A_1 , A_2 , A_3 et A_4 sont non vides.
- Montrer que A₁, A₂, A₃ et A₄ sont deux à deux disjoints.
- 3. Montrer que $A_1 \cup A_2 \cup A_3 \cup A_4 = E$.

Exercice7

- 1. Montrer que $(A \setminus B) \setminus C = A \setminus (B \cup C)$
- 2. Montrer que $(A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cup D)$

Exercice8

On rappelle que l'on note

$$A\Delta B=(A\setminus B)\cup (B\setminus A)$$

1. Montrer que

$$(A \cap B) \cap (\overline{A \cap C}) = A \cap B \cap \overline{C}$$
$$(A \cap C) \cap (\overline{A \cap B}) = A \cap C \cap \overline{B}$$

2. En déduire que

$$(A \cap B)\Delta(A \cap C) = A \cap (B\Delta C)$$

Exercice9

On rappelle que pour toutes parties U et V d'un ensemble E, on note

$$U\Delta V = (U \setminus V) \cup (V \setminus U)$$

1. Montrer que pour toutes parties A, B et C d'un ensemble E.

$$(A \cup B) \cap (\overline{A \cup C}) = \overline{A} \cap B \cap \overline{C}$$
$$(A \cup C) \cap (\overline{A \cup B}) = \overline{A} \cap C \cap \overline{B}$$

2. En déduire que

$$(A \cup B) \Delta (A \cup C) = \overline{A} \cap (B \Delta C)$$

Exercice10

Soit E un ensemble et soit $\mathcal{P}(E)$ l'ensemble des parties de E. Pour A et B dans $\mathcal{P}(E)$, on appelle différence symétrique de A par B l'ensemble, noté $A\Delta B$ défini par :

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

- 1. Montrer que $A\Delta B = (A \cap \overline{B}) \cup (B \cap \overline{A}) = (A \setminus B) \cup (B \setminus A)$.
- 2. Calculer AΔA, AΔØ et AΔE.
- 3. Montrer que pour tous A, B et C dans $\mathcal{P}(E)$, on a :
 - a) Montrer que : $(A \cap \overline{B}) \cup (B \cap \overline{A}) = (\overline{A} \cap \overline{B}) \cup (B \cap A)$
 - b) Montrer que : $(A \triangle B) \triangle C = (A \cap \overline{B} \cap \overline{C}) \cup (B \cap \overline{A} \cap \overline{C}) \cup (C \cap \overline{A} \cap \overline{B}) \cup (C \cap B \cap A)$
 - c) Montrer que $A\Delta(B\Delta C) = (C\Delta B)\Delta A$
 - d) A l'aide du b), montrer que $(A\Delta B)\Delta C = (C\Delta B)\Delta A$,
 - e) En déduire que : $(A\Delta B)\Delta C = A\Delta (B\Delta C)$

Exercice11

Soit E un ensemble et F et G deux parties de E. Démontrer que :

1.
$$F \subseteq G \Leftrightarrow F \cup G = G$$

2.
$$F \subseteq G \Leftrightarrow F \cap C_FG = \emptyset$$

Exercice12

Soient A et B deux parties d'un ensemble E . Démontrer les égalités suivantes :

1.
$$C_E(A \cap B) = C_E A \cup C_E B$$

2.
$$C_E(A \cup B) = C_E A \cap C_E B$$

Si $A \subseteq B$, montrer $C_E B \subseteq C_E A$

Exercice13

1. Ecrire en extension les ensembles suivants

$$A = \left\{ x \in \mathbb{N} / \frac{3x+2}{x-2} \in \mathbb{Z} \right\} \text{ et B} = \left\{ x \in \mathbb{N} / \frac{5x+7}{x-1} \in \mathbb{N} \right\}$$

- 2. Soit A = $\left\{\frac{-1+2k}{3}/k \in \mathbb{Z}\right\}$ B= $\left\{1+2k/k \in \mathbb{Z}\right\}$.Montrer que A \subset B et $A \neq B$.
- 3. Montrer que les deux ensembles suivants sont disjoints

$$\mathsf{A} = \left\{ \frac{4k+5}{10} / k \in \mathbb{Z} \right\} \mathsf{et} \; \mathsf{B} = \left\{ \frac{8k+5}{20} / k \in \mathbb{Z} \right\}.$$

Exercice14

Soient A, B et C trois parties d'un ensemble E.

1. Que pensez-vous de l'implication

$$A \cup B \nsubseteq C \Rightarrow (A \nsubseteq C \text{ ou } B \nsubseteq C)$$
?

Justifiez (on pourra utiliser la contraposée).

2. On suppose que l'on a les inclusions suivantes : $A \cup B \subset A \cup C$ et $A \cap B \subset A \cap C$. Montrer que $B \subset C$.