التنقيط الموضوع الأول في الفيزياء: المجال المغنطيسي الأرضي (7.5 نقطة)

تعتبر الأرض كغيرها من الأجرام السماوية الأخرى (النجوم و الكواكب.) مصدرا من مصادر المجال المغنطيسي. و بكيفية تقريبية يشبه المجال المغنطيسي الأرضي المجال المحدث من طرف مغنطيس مستقيمي مموضع في مركز الأرض و يتواجد محوره في مستوى خط الزوال المغنطيسي .

تتوفر متجهة المجال المغنطيسي الأرضي على مركبتين: مركبة رأسية B_{V} متجهة نحو مركز الأرض وأخرى أفقية B_H عمودية على خط الزوال المغنطيسي لتحديد قيمة هذه الأخيرة لا يمكن استعمال جهاز التسلامتر مباشرة و إنما نستعين بوشيعة مسطحة.

نضع وشيعة مسطحة شعاعها R=1.2m و عدد لفاتها N=50 موازية لخط الزوال المغنطيسي. في مركز الوشيعة نثبت إبرة ممغنطة حرة الدوران على محور أفقي . نمرر في الوشيعة تيارا كهربائيا شدته I فنلاحظ انحراف الإبرة الممغنطة بزاوية α .

أعطى قياس الزوايا α لدوران الإبرة الممغنطة بالنسبة لقيم متعددة للتيار الكهربائي I النتائج المدونة في الجدول التالي:

I (en A)	2	1,6	1,2	0,8	0,4
α (en °)	70	65	58	47	28

1/-أسئلة حول النص:

1-1/- عرف ما تحته خط. 0.75ن

1-2/-أعط تفسير الانحر اف الإبرة الممغنطة؟

1-3/-في غياب التيار الكهربائي حدد اتجاه ومنحى الإبرة الممغنطة؟

4-1/- هل يمكن جهاز التسلامتر من تحديد قيمة المركبة B_H ؟ علل جوابك ؟

2/-دراسة المجال المغنطيسي الأرضى:

2-1/- ما هو الجهاز الذي يمكن من تغيير شدة التيار الكهربائي في الدارة؟

 α بدلالة ظل الزاوية α بدلالة كل الزاوية α

. N ; R ; μ_0 ; B_H أوجد تعبير المعامل الموجه k لهذه الدالة بدلالة

 $\mu_0 = 4\pi.10^{-7} (\mathrm{SI})$ أوجد قيمة المركبة الأفقية $\mathrm{B_H}$ اعتمادا على نتائج هذه التجربة. نعطي

 $_{
m -}$ استنتج قيمة المركبة $_{
m B}_{
m V}$ علما أن زاوية الميل تساوي تقريبا $_{
m B}$

3/ تراكب مجالات مغنطيسية:

 $B_1=2m$ نمرر في الوشيعة السابقة تيار كهربائي شدته I يؤدي إلى حدوث مجال مغنطيسي شدته في نقطة M تنتمي إلى محور الوشيعة.

نضع مغنطيس مستقيمي مائل بزاوية β عن محور الوشيعة فيحدث في النقطة M مجالا مغنطيسيا شدته $B_2=2mT$. (أنظر الشكل في الورقة المرافقة 3/3).

1-3/- مثل متجهة المجال المغنطيسي الكلي B المحدث في النقطة M

(التمثيل في الورقة المرافقة 3/3).

* نعطى السلم 1Cm يمثل 1mT

B حدد هندسيا شدة المجال الكلى

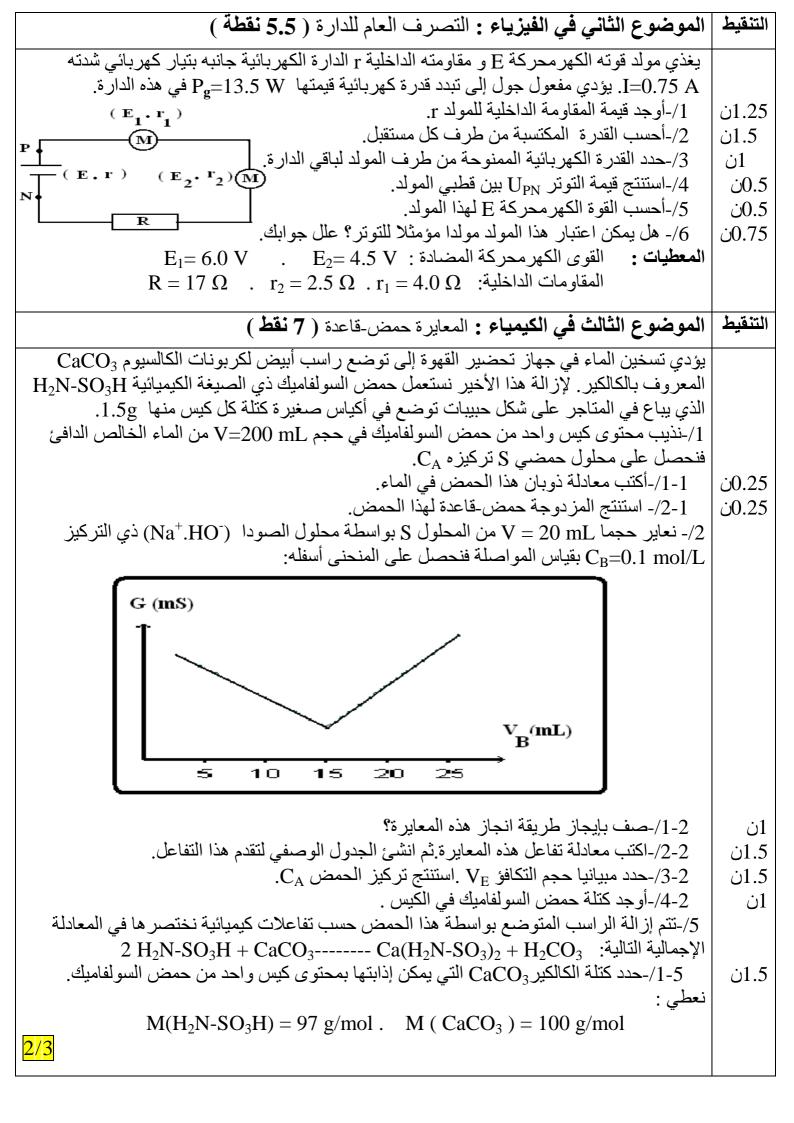
 β -استنتج حسابيا قياس الزاوية β

0.25ن

0.5 ن 0.25ن

0.25ن 1ن

1ن 1.25ن

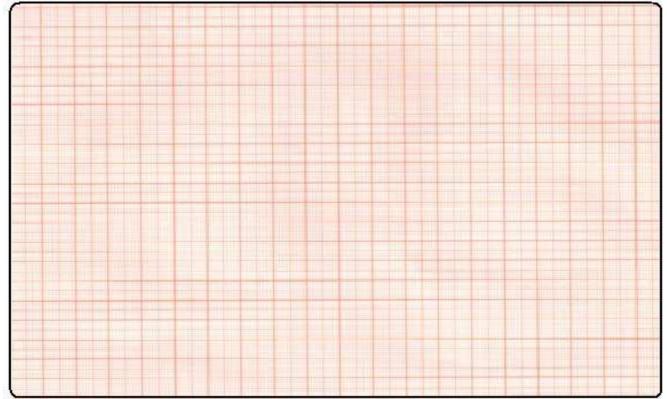

0.75ن

0.75ن

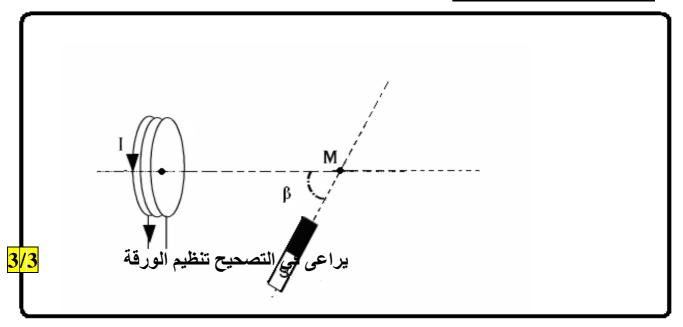
0.25ن

0.5ن

1/3



المراقبة المستمرة : فرض محروس رقم ٩ المستوى: أع تجريبية ثانوية طارق بن زياد التأهيلية


الرقم الترتيبي: (ترجع هذه الورقة مع ورقة التحرير)

الموضوع الأول في الفيزياء:

موصوح ادوں سي سير المعنطيسي الأرضى: Δ/-دراسة المجال المغنطيسي الأرضى: منحنى تغيرات Ι بدلالة tanα.

3/ تراكب مجالات مغنطيسية:

