المادة: الرياضيات

الأستاذ: على الشريف

القسم: الثانية باكالوريا علوم فيزيائية

فرض منزلي رقم 2 الدورة الأولى . بتاريخ :2013/12/17 الصفحة الأولى نيابة الخميسات

الثانوية التأهيلية محمد بن الحسن الوزاني

السنة الدراسية: 2014/2013

التمرين الأول: 1) بسط الكتابات التالية:

$$A = \ln(7 + 4\sqrt{3})^{15} + \ln(7 - 4\sqrt{3})^{15}$$
 ①

$$B = ln(2) + ln(2+\sqrt{2}) + ln(2+\sqrt{2+\sqrt{2}}) + ln(2-\sqrt{2+\sqrt{2}})$$
 ②

2) حدد مجموعة تعريف الدوال:

$$f(x) = \frac{1}{(\ln(x))^2 - 1}$$
 ③ , $f(x) = \ln(x+1) - \ln(3-x)$ ② , $f(x) = \frac{\ln(x+2)}{\ln(x) - 1}$ ①

: ما يلى \mathbb{R} ما يلى 3

$$ln(2x-3) + 2ln(x-2) \ge ln(-2x^2 + 19x - 24)$$
 ② $ln(x^2 + 7x + 10) = ln(x+6)$ ①

: I حدد الدوال الاصلية للدالة على المجال (4

$$f(x) = \frac{\ln(x+1)}{x+1}$$
; $I = [1; +\infty[$ ② , $f(x) = x^2 - 2 + \frac{4}{5x+1}$; $I = [0; +\infty[$ ①

$$f(x) = \frac{\sin(x)}{1 + 2\cos(x)}$$
; $I = \left[0; \frac{2\pi}{3}\right]$ (4) $f(x) = \frac{2x + 1}{2x^2 + 2x + 1}$; $I = R$ (3)

$$\begin{cases} f(x) = \sqrt{x^2 - 2x} ; x \ge 2 \\ f(x) = \frac{x^2 - 4}{x} ; x < 2 \end{cases}$$
 : نعتبر الدالة المعرفة على بما يلي:

2) ادرس اتصال الدالة f في العدد

. ادرس قابلية اشتقاق f على يمين ثم على يسار 2 ثم أول هندسيا النتائج المحصل علما .

.
$$\lim_{x \to +\infty} \frac{f(x)}{x}$$
 و $\lim_{x \to +\infty} f(x)$ ا احسب (3

ب - احسب f(x) - ماذا تستنتج ب

إنا احسب $\lim_{x\to -\infty} f(x) - x$ و $\lim_{x\to -\infty} f(x)$ ماذا تستنتج $\int_{0}^{\infty} \frac{1}{x} dx$

. ب $\lim_{\substack{x \to 0 \\ x \to 0}} f(x)$ و $\lim_{\substack{x \to 0 \\ x \to 0}} f(x)$ عليها النتائج المحصل عليها .

. أدرس تغيرات الدالة f ثم ضع جدول التغيرات (5

 $]-\infty,0[$ على المجال y=x على الذي معادلته و المستقيم الذي للمنحى النسبي للمنحى C_f على المجال 0

. $\left(O, \vec{I}, \vec{J}\right)$ مثل المنحنى C_f في معلم متعامد ممنظم

. المجال على المجال $[-\infty; 0]$ دالة عكسية معرفة على مجال يجب تحديده . $[-\infty; 0]$

. ب – مثل $\left(C_{g^{-1}}
ight)$ في نفس المعلم السابق

. $\left(g^{-1}\right)'(3)$ ج أحسب $\left(g(-1)\right)$ ثم آستنج حساب

المادة: الرياضيات

الأستاذ : علي الشريف

القسم: الثانية باكالوريا علوم فيزيائية

فرض منزلي رقم 2 الدورة الأولى. بتاريخ :2013/12/17 الصفحة الثانية نيابة الخميسات الثانوية التأهيلية محمد بن الحسن الوزاني السنة الدراسية: 2014/2013

التمرين الثالث:

.
$$u_{n+1}=\frac{2u_n+3}{4+u_n}$$
 ; $u_0=0$: نعتبر المتتالية $\left(u_n\right)_{n\in\mathbb{N}}$ المعرفة بما يلي $\left(u_n\right)_{n\in\mathbb{N}}$

$$(\forall n \in \mathbb{N})$$
: $v_n = \frac{u_n - 1}{u_n + 3}$: ولتكن $(v_n)_{n \in \mathbb{N}}$

.
$$(\forall n \in \mathbb{N})$$
 : $0 \leq u_n \prec 1$: نائرجع أن (1

.
$$(u_n)_{n\in\mathbb{N}}$$
 يين أن : $(\forall n\in\mathbb{N})$: $u_{n+1}-u_n=\frac{4-(u_n-1)^2}{4+u_n}$: يين أن : (2

بين أن المتتالية $(v_n)_{n\in\mathbb{N}}$ المعرفة أعلاه هندسيا محدد أساسها وحدها الأول (3

.
$$n$$
 بدلاله v_n بدلاله (4

.
$$\lim_{n\to +\infty} u_n = \frac{1-\left(\frac{1}{5}\right)^n}{1+\frac{1}{3}\left(\frac{1}{5}\right)^n}$$
 : ثم أحسب $1+\frac{1}{3}\left(\frac{1}{5}\right)^n$

.
$$(\forall n \in \mathbb{N})$$
: $W_n = n + V_n$: نضع (5

.
$$(n \in \mathbb{N}^*)$$
 بحيث $S_n = w_0 + w_1 + w_2 + \dots + w_{n-1} :$ المجموع المجمو

$$\lim_{x\to +\infty} S_n:$$
 ب